CS 353 - DATABASE SYSTEMS
TERM PROJECT DESIGN
REPORT

Group 22
Esra Geng 21901962, Section 3

Doga Ece Ersoy 21902487, Section 3
Ayberk Yasa 21801847, Section 3
Fatih Kaplama 21802755, Section 2

TA: Ziilal Bingol

1. Revised E-R Diagram
2. Table Schemas

3. Scenarios
3.1. Login and Register
3.1.1. Uls
3.1.2. SQL Queries
3.2. Fine Payment
3.2.1. Uls
3.2.2. SQL Queries
3.3. Movie Rental
3.3.1. Uls
3.3.2. SQL Queries

21
21
21
22
22
23
24
24
25
26

1. Revised E-R Diagram

> Ounous

/o@v shepanpiano ;i@
g, ewaisna”@e1e0 v0kojdt

JawioIsny aakojdwe saow”ppe

piomssed “Jsanbe..
sepunal fewe
amep yuq
isanbes pusLy
ouEBuIsE|

SuEU”BIPPIW

oweuISy

owey

-
S mausy

Jasn
s o> (B} <o e

. I ejep”anp oepuowied

E‘ N 1Ep W) 1500

noinss T g

AP wal wawded
Feak” uoponpoid aoud
uondo™apnans
L

P amom B8] uondo™ abenbue)
BiAow™pejsenbel auusb
mak uomanposd

woneinp Tuswiked [Ewa)
Buges |[21A0
o
P onom
80w

waup
BuleU 158| J0108p
BURU BPPIL OB
aweu a.uab
WU TSI 0P

pramss
5 Bweu ouURLTISE 08
ausl

o TowaIn aweu aipp 01

oRIP sweuI0WE
e
owey

prione

10198

Revised Parts
e Rent relationship is switched to an entity. As a result, rent_ movie relationship is
created.
Forgotten genre attribute is removed from the movie entity.
fine id in fine weak entity is underlined dotted.
delete_customer relationship between customer and employee entities is created.
add _movie relationship between employee and movie entities is created.
Attributes email and password are added to the user entity.
withdrawn attribute is added to rent_movie relation.

2. Table Schemas

movie(movie_id, title, overall rating, duration, production year, language option,
subtitle option, price)

Primary Key:

movie id

Candidate Keys:
movie id

Functional Dependencies:

movie_id — title, overall rating, duration, production year, language option,
subtitle option, price

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS movie (
movie id INT NOT NULL AUTO_ INCREMENT,
title VARCHAR (30) NOT NULL,
overall rating FLOAT,
duration INT NOT NULL,
production year CHAR(4) NOT NULL,

language option VARCHAR(15) NOT NULL,

subtitle option VARCHAR(15),
price INT NOT NULL,
PRIMARY KEY (movie id));
rent(rent_id, rent date, due date, last renew_date, renew_times)
Primary Key:
rent_id
Candidate Keys:
rent_id
Functional Dependencies:
rent id — rent date, due date, last renew_date, renew_times
Normal Form:
BCNF
Table Declaration:
CREATE TABLE IF NOT EXISTS rent (
rent id INT NOT NULL AUTO INCREMENT,
rent date DATE,
due date DATE,
last renew date DATE,
renew_ times INT,

PRIMARY KEY (rent id));

user(user_id, first name, middle name, last name, birth date, email, password)
Primary Key:
user_id
Candidate Keys:

user_id, email

Functional Dependencies:
user_id — first name, middle name, last name, birth date, email, password
email — user_id, first name, middle name, last name, birth_date, password
Normal Form:
BCNF
Table Declaration:
CREATE TABLE IF NOT EXISTS user (
user id INT NOT NULL AUTO_ INCREMENT,

first name VARCHAR (10) NOT NULL,

middle name VARCHAR(10),

last name VARCHAR(10) NOT NULL,

birth date DATE NOT NULL,

email VARCHAR(25),

password VARCHAR (20) NOT NULL,

PRIMARY KEY (user id));

customer(user_id, status)

Primary Key:

user id

Candidate Keys:

user_id

Foreign Keys:

user_id is FK to user
Functional Dependencies:
user id — status

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS customer (
user id INT NOT NULL,
status VARCHAR(10) NOT NULIL,
PRIMARY KEY (user id),

FOREIGN KEY (user id) REFERENCES user (user id));

employee(user_id, salary)
Primary Key:
user_id
Candidate Keys:
user_id
Foreign Keys:
user id is FK to user
Functional Dependencies:
user_id — salary
Normal Form:
BCNF
Table Declaration:

CREATE TABLE IF NOT EXISTS employee (
user id INT NOT NULL,
salary INT NOT NULL,
PRIMARY KEY (user id),

FOREIGN KEY (user id) REFERENCES user (user id));

actor(actor_id, actor first name, actor middle name, actor last name)
Primary Key:
actor_id
Candidate Keys:
actor id
Functional Dependencies:
actor_id — actor_first name, actor middle name, actor last name
Normal Form:
BCNF
Table Declaration:
CREATE TABLE IF NOT EXISTS actor (
actor id INT NOT NULL AUTO INCREMENT,
actor first name VARCHAR(10),
actor middle name VARCHAR(10),

actor last name VARCHAR(10) NOT NULL,

PRIMARY KEY (actor id));

director(director_id, director first name, director middle name, director last name)
Primary Key:
director id
Candidate Keys:
director id
Functional Dependencies:
director id — director first name, director middle name, director last name
Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS director (
director_id INT NOT NULL AUTO INCREMENT,
director first name VARCHAR(10),
director middle name VARCHAR(10),
director last name VARCHAR(10) NOT NULL,

PRIMARY KEY (director id));

genre(genre_id, genre_name)
Primary Key:
genre id
Candidate Keys:
genre_id, genre_name
Functional Dependencies:
genre id — genre name
Normal Form:
BCNF
Table Declaration:
CREATE TABLE IF NOT EXISTS genre (
genre_ id INT NOT NULL AUTO INCREMENT,

genre name VARCHAR(12) NOT NULL,

PRIMARY KEY (genre 1id));

requested movie(req_movie_id, title, production_year, director)
Primary Key:

req_movie id

Candidate Keys:

req_movie id

Functional Dependencies:

req_movie id — title, production_year, director

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS requested movie (
reqg movie id INT NOT NULL AUTO_ INCREMENT,
title VARCHAR(30) NOT NULL,
production year CHAR(4) NOT NULL,
director VARCHAR(30),

PRIMARY KEY (req movie id));

upcoming_movie(movie_id, upcoming_date)
Primary Key:
movie id
Candidate Keys:
movie id
Foreign Keys:
movie_id is FK to movie
Functional Dependencies:
movie_id — upcoming_date
Normal Form:
BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS upcoming movie (
movie id INT NOT NULL,
upcoming date DATE NOT NULL,
PRIMARY KEY (movie id),

FOREIGN KEY (movie id) REFERENCES movie (movie id));

payment(payment id, cost, payment date)

Primary Key:

payment_id

Candidate Keys:

payment id

Functional Dependencies:

payment_id — cost, payment date

Normal Form:

BCNF

Table Declaration:

CREATE TABLE payment (
payment id INT NOT NULL AUTO INCREMENT,
cost FLOAT,

payment date DATE,

PRIMARY KEY (payment id));

rent_movie(rent_id, movie_id, user_id, withdrawn)
Primary Key:
{rent_id, movie id, user id}

Candidate Keys:

{rent_id, movie id, user id}

Foreign Keys:

rent_id is FK to rent

movie_id is FK to movie

user_id is FK to user

Functional Dependencies:

rent_id, movie id, user id — withdrawn

Normal Form:

BCNF

Table Declaration:

CREATE TABLE rent movie (
movie id INT,
rent id INT,
user id INT,
withdrawn BOOLEAN,
PRIMARY KEY (movie id, rent id, user id),

FOREIGN KEY (rent id) REFERENCES rent (rent id) on
UPDATE CASCADE ON DELETE RESTRICT),

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT),

FOREIGN KEY (user id) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT) ;

act(movie id, actor id)

Primary Key:
{movie id, actor id}

Candidate Keys:

{movie _id, actor id}

Foreign Keys:

movie_id is FK to movie

actor_id is FK to ac

Normal Form:

BCNF

Table Declaration:

CREATE TABLE
movie id
actor id
PRIMARY

FOREIGN
UPDATE CASCADE ON

FOREIGN
UPDATE CASCADE ON

tor

IF NOT EXISTS act (

INT NOT NULL,
INT NOT NULL,
KEY (movie id, actor id),

KEY (movie id) REFERENCES movie (movie 1id)
DELETE RESTRICT,

KEY (actor id) REFERENCES actor (actor id)
DELETE RESTRICT) ;

direct(movie_id, director_id)

Primary Key:

{movie_id, director_id}

Candidate Keys:

{movie_id, director id}

Foreign Keys:

movie_id is FK to movie

director_id is FK to director

Normal Form:

BCNF

Table Declaration:

on

on

CREATE TABLE IF NOT EXISTS direct (
movie id INT NOT NULL,
director id INT NOT NULL,
PRIMARY KEY (movie id, director id),

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY(director_id) REFERENCES
director (director id) on UPDATE CASCADE ON DELETE RESTRICT);

movie genre(movie_id, genre_id)

Primary Key:

{movie id, genre id}

Candidate Keys:

{movie id, genre id}

Foreign Keys:

movie_id is FK to movie

genre id is FK to genre

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS movie genre (
movie id INT NOT NULL,
genre id INT NOT NULL,

PRIMARY KEY (movie id, genre id),

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (genre id) REFERENCES genre (genre id) on
UPDATE CASCADE ON DELETE RESTRICT)

rating(user_id, movie_id, rating)

Primary Key:

{user id, movie id}

Candidate Keys:

{user_id, movie id}

Foreign Keys:

user_id is FK to user

movie_id is FK to movie

Functional Dependencies:

user_id, movie id — rating

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS rating (
user id INT NOT NULL,
movie id INT NOT NULL,
rating FLOAT NOT NULL,

PRIMARY KEY (user id, movie id),

FOREIGN KEY (user id) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (movie id) REFERENCES movie (movie id)
UPDATE CASCADE ON DELETE RESTRICT) ;

favorite(user id, movie id)

Primary Key:

{user id, movie id}

on

Candidate Keys:

{user_id, movie id}

Foreign Keys:

user_id is FK to user

movie_id is FK to movie

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS favorite (
user_id INT NOT NULL,
movie id INT NOT NULL,

PRIMARY KEY (user id, movie id),

FOREIGN KEY (user id) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (movie id) REFERENCES movie (movie id)
UPDATE CASCADE ON DELETE RESTRICT) ;

review(user_id, movie_id, review)
Primary Key:
{user id, movie id}
Candidate Keys:
{user_id, movie id}
Foreign Keys:
user_id is FK to user
movie_id is FK to movie
Functional Dependencies:

user id, movie id — review

on

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS review (
user id INT NOT NULL,
movie_id INT NOT NULL,
review VARCHAR (300) NOT NULL,
PRIMARY KEY (user id, movie id),

FOREIGN KEY (user id) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT) ;

recommendation(recommender, friend, movie_id)

Primary Key:

{recommender, friend, movie id}
Candidate Key:

{recommender, friend, movie id}
Foreign Keys:

recommender is FK to user
friend is FK to user

movie_id is FK to movie
Normal Form:

BCNF

Table Declaration:
CREATE TABLE IF NOT EXISTS recommendation (

recommender INT NOT NULL,

friend INT NOT NULL,
movie_id INT NOT NULL,
PRIMARY KEY (recommender, friend, movie id),

FOREIGN KEY (recommender) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (friend) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT) ;

request(user_id, req_movie_id)

Primary Key:

{user id, req movie id}

Candidate Keys:

{user id, req movie id}

Foreign Keys:

user_id is FK to customer

req_movie_id is FK to requested movie

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS request (
user id INT NOT NULL,
req movie id INT NOT NULL,
PRIMARY KEY (user id, reg movie id),

FOREIGN KEY (user id) REFERENCES customer (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (reqg movie id) REFERENCES
requested movie (req movie id) on UPDATE CASCADE ON DELETE
RESTRICT) ;

reminder(user_id, movie id)

Primary Key:

{user id, movie id}

Candidate Keys:

{user_id, movie id}

Foreign Keys:

user_id is FK to customer

movie_id is FK to movie

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS reminder (
user_id INT NOT NULL,
movie id INT NOT NULL,
PRIMARY KEY (user id, movie id),

FOREIGN KEY (user id) REFERENCES customer (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY(movie_id) REFERENCES
upcoming movie (movie id) on UPDATE CASCADE ON DELETE
RESTRICT) ;

delete customer(employee, customer)
Primary Key:

{employee, customer}

Candidate Keys:
{employee, customer}
Foreign Keys:

employee is FK to employee
customer is FK to customer
Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS delete customer (
employee INT NOT NULL,
customer INT NOT NULL,
PRIMARY KEY (employee, customer),

FOREIGN KEY (employee) REFERENCES employee (user id)
on UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (customer) REFERENCES customer (user id)
on UPDATE CASCADE ON DELETE RESTRICT) ;

rental payment(payment id, rent id)
Primary Key:
{payment id, rent id}
Candidate Keys:
{payment id, rent id}
Foreign Keys:
payment_id is FK to payment
rent_id is FK to rent
Normal Form:

BCNF

Table Declaration:

CREATE TABLE rental payment (
payment id INT,
rent id INT,
PRIMARY KEY (payment id, rent id),

FOREIGN KEY (rent id) REFERENCES rent (rent id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (payment id) REFERENCES
payment (payment id) on UPDATE CASCADE ON DELETE
RESTRICT) ;

friends(request_reciever, request sender)

Primary Key:

{request_reciever, request_sender}

Candidate Keys:

{request_reciever, request_sender}

Foreign Keys:

request_reciever is FK to user

request_sender is FK to user

Normal Form:

BCNF

Table Declaration:

CREATE TABLE friends (
request receiver INT,
request sender INT,

PRIMARY KEY (request receiver, request sender),

FOREIGN KEY (request receiver) REFERENCES
user (user id) on UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (request sender) REFERENCES
user (user id) on UPDATE CASCADE ON DELETE RESTRICT) ;

fine(user_id, fine_id, overdue days, amount)

Primary Key:

{user id, fine id}

Candidate Keys:

{user_id, fine id}

Foreign Keys:

user_id is FK to customer

Normal Form:

BCNF

Table Declaration:

CREATE TABLE IF NOT EXISTS fine (
user id INT NOT NULL,
fine id INT UNIQUE NOT NULL,
overdue days INT NOT NULL,
amount FLOAT,

PRIMARY KEY (user id, fine id),

FOREIGN KEY (user id) REFERENCES customer (user id));

fine payment(user_id, payment id, fine id)
Primary Key:
{user id, payment id, fine id}
Candidate Keys:
{user_id, payment id, fine id}
Foreign Keys:

user id is FK to fine

fine id is FK to fine
payment id is FK to payment
Normal Form:

BCNF

Table Declaration:
CREATE TABLE fine payment (
user id INT,
payment id INT,
fine id INT,
PRIMARY KEY (user id, payment id, fine id),

FOREIGN KEY (user id) REFERENCES fine (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (fine id) REFERENCES fine(fine id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (payment id) REFERENCES
payment (payment id) on UPDATE CASCADE ON DELETE
RESTRICT) ;

add movie(user_id, movie_id)

Primary Key:

{user id, movie id}
Candidate Keys:
{user_id, movie id}
Foreign Keys:

user_id is FK to user
movie_id is FK to movie

Normal Form:

BCNF

Table Declaration:

CREATE TABLE add_movie (

user id INT,

movie id INT,

PRIMARY KEY (user id, movie id),

FOREIGN KEY (user id) REFERENCES user (user id) on
UPDATE CASCADE ON DELETE RESTRICT,

FOREIGN KEY (movie id) REFERENCES movie (movie id) on
UPDATE CASCADE ON DELETE RESTRICT) ;

3. Scenarios

This part provides Uls and SQL queries of common functionalities that were given in
the project functionality document and first topic-specific functionality which is the movie
rental.

3.1. Login and Register

Login operation will be done on the same page for both the customer and the
employee. Moreover, register operation will be done on the same page for both the customer
and the employee. Therefore, there are two mock-ups in this section, which set light to the
future frontend implementation.

3.1.1. UIs

Sign In

Login Page for both the customer and the employee

Sign Up Page for both the customer and the employee

3.1.2. SQL Queries

a. Login
Inputs: @email, @password
Query:
SELECT *
FROM user
WHERE email = @email and password = (@password

b. Register

Inputs: @first name, @middle name, @last name, @birth date, @email,
@password

Query:

INSERT INTO user (first name, middle name, last name,
birth date, email, password)

VALUES (@first name, @middle name, @last name,
@birth date, @email, @password)

3.2. Fine Payment

A customer's movie rental period is 1 week and is determined automatically by the

system. When withdrawing movies that exceed the due date, a fine is calculated based on the

number of days passed from the due date and the customer is asked to pay. The customer

cannot withdraw the movie without making fine payment. In the first UI below, the user who

clicks the withdraw button corresponding to the movie s/he wants to withdraw will see the

payment screen in the second UI. S/he can pay the fine there.

3.2.1. UIs

T Withdraw a Movie

q c Overdue .
Director Price (TL) RentDate DueDate B Withdraw

Withdraw Page

Payment Page

3.2.2. SQL Queries

a. Search the movie by a criteria such as name, director etc.

Inputs: @searchlnput

Query:

SELECT title, director first name, director middle name,
director last name, genre name, overall rating,
production year, price

FROM movie NATURAL JOIN act NATURAL JOIN actor NATURAL
JOIN direct NATURAL JOIN director NATURAL JOIN movie genre
NATURAL JOIN genre

WHERE title = @searchInput OR actor first name =

@searchInput OR actor middle name = (@searchInput OR
actor last name = @searchInput
OR director first name = @searchInput OR
director middle name = @searchInput OR director last name =
@searchInput;

b. Withdraw the movie
Inputs: @rentld (comes from the previous page),

Query:
UPDATE rent movie

SET withdrawn = true
WHERE rentId = @QrentId

c. Pay the fine
Inputs: @userld (comes from the previous page), @paymentld (comes from the
previous page), @fineld (comes from the previous page),

Query:
INSERT INTO fine payment (user id, payment id, fine id)
VALUES (@QuserlId, @paymentId, @fineId);

3.3. Movie Rental

The customer can search the movie by a criteria such as name, director, etc. Moreover, if s/he
wants, s’he can apply a category filter to the list of movies. When s/he clicks the details
button, s/he can see the pop-up containing the detailed information about the corresponding
movie. Moreover, s/he can rent the movie from this pop-up. When s/he clicks the rent button,
s’/he can see the payment screen.

3.3.1. UIs

F Rent a Movie

- Action Comedy Sci-Fi Romance Mystery
Select Llllapel‘ Select lower
threshold of price: threshold of rate:

Select one or more
genres of movie:

Price

Director Genre Rate Year (1) Details

Titanic James Cameron Romance 8.6 1997 10

Predestination Michael Spierig, Peter Spierig Sci-Fi 78 2014 5

Rent Page

Payment Page

3.3.2. SQL Queries

a. Search the movie by a criteria such as name, director etc.

Inputs: @searchlnput

Query:

SELECT title, director first name, director middle name,
director last name, genre name, overall rating,
production year, price

FROM movie NATURAL JOIN act NATURAL JOIN actor NATURAL
JOIN direct NATURAL JOIN director NATURAL JOIN movie genre
NATURAL JOIN genre

WHERE title = @searchInput OR actor first name =

@searchInput OR actor middle name = (@searchInput OR
actor last name = @searchInput
OR director first name = @searchInput OR
director middle name = @searchInput OR director last name =
@searchInput;

b. Apply filters if necessary
Inputs: @genrelnput, @ratingInput, @pricelnput

Query:

fgenre filter

SELECT title, director first name, director middle name,
director last name, genre name, overall rating,
production year, price

FROM movie NATURAL JOIN direct NATURAL JOIN director
NATURAL JOIN movie genre NATURAL JOIN genre

WHERE genre name = (@genrelnput;

frating filter

SELECT title, director first name, director middle name,
director last name, genre name, overall rating,
production year, price

FROM movie NATURAL JOIN direct NATURAL JOIN director
NATURAL JOIN movie genre NATURAL JOIN genre

WHERE overall rating > @ratingInput;

#fprice filter

SELECT title, director first name, director middle name,
director last name, genre name, overall rating,
production year, price

FROM movie NATURAL JOIN direct NATURAL JOIN director
NATURAL JOIN movie genre NATURAL JOIN genre

WHERE price < @pricelInput;

c. Select the movie (due date is specified automatically)

Inputs: No input

Query:

INSERT INTO rent (rent date, due date, last renew date,
renew times)

VALUES (CURRENT DATE (), DATE ADD(CURRENT DATE (), INTERVAL
7 DAY), CURRENT DATE(), 0);

INSERT INTO rent movie (movie id, rent id, user id)
VALUES (@movieId, (SELECT MAX(rent id) from rent),
QuserId) ;

d. Pay the rent

Inputs: @movield (comes from the previous page), @rentld (comes from the
previous page)

Query:

INSERT INTO payment (cost, payment date)

VALUES ((SELECT price FROM movie WHERE movie id =
@movieId), CURRENT DATE());

INSERT INTO rental payment (payment id, rent id)
VALUES ((SELECT MAX (payment id) FROM payment), (@rentId);

