
CS 353 - DATABASE SYSTEMS
PROJECT PROPOSAL

Group 22
Esra Genç 21901962, Section 3
Doğa Ece Ersoy 21902487, Section 3
Ayberk Yaşa 21801847, Section 3
Fatih Kaplama 21802755, Section 2

TA: Zülal Bingöl

Contents
1. Introduction 3

2. Why/How A Database Is Going To Be Used As A Part Of The System 3

3. Requirements 3
3. 1. Functional Requirements 3

3.1.1. User 3
3.1.2. Employee 4
3.1.3. Customer 4

3.2. Non-functional Requirements 4
3.2.1. Scalability 4
3.2.2. Usability 4
3.2.3. Security 4
3.2.4. Robustness 5
3.2.5. Recovery 5

3.3. Limitations 5
3.4. Pseudo Requirements 5

4. E-R Diagram of the Movie Rental System 6

5. Project Website Link 6

6. References 6

1. Introduction
The aim of this project is to create a web-based database application that will serve as

a movie rental system. This system will be an online platform that will offer its users various
numbers of movies to rent, watch, review and more. It will consist of two types of main
users: customers and employees. Users will be able to rent the movies that are already
registered to the system. They will be given the opportunity to search for a specific movie by
entering its title, director, genre, etc. The feature of rating and reviewing movies will help
other users during the process of choosing movies whereas the feature of recommending
movies to added friends will guarantee an enjoyable time while using this system. Customers
will have the chance to demand for the movies that the system lacks and employees will be
able to add the requested movies to the system. Employees will also be able to delete the
accounts of desired customers from the system. Overall, the purpose of this movie rental
system is to facilitate renting and watching movies online by using the optimal database
design. In this report, this movie rental system is evaluated in terms of its functional
requirements, non-functional requirements and limitations along with the explanation for the
reasons behind using a database and the ER Diagram of the system.

2. Why/How A Database Is Going To Be Used As A Part
Of The System

A database-management system (DBMS) is a collection of interrelated data and a
set of programs to access that data [1]. As described above, our application consists of a
system that lets users access a large collection of movies. In order to keep track of these data
about movies and user information, and provide a smooth rental experience to users, we need
an appropriate database management system. This system we are planning to design will
store all the information about movies available to rent, requested movies, ratings and
reviews, rental records, registered users’ account information and many more. Tables and the
relationships established between these tables in our database schema will pave the way for a
simpler design, therefore a more efficient application. The system will be used as a tool to
allow the users to access and manipulate this data under the limitations described below in
this report.

3. Requirements
3. 1. Functional Requirements
3.1.1. User

● Users can search the movies by title, director, genre, production year, rating, actor, the
number of reviews, the number of recommendations.

● Users can withdraw a movie that they have already rented.
● Users can write reviews and rate a movie.

● Users can add friends and recommend movies to them.
● Users can see previously rented movies, currently rented movies, movie ratings,

reviews, and the movies that their friends suggest.
● Users can see their friends’ previously rented movies, currently rented movies, movie

ratings, reviews, and the movies that their friends’ friends suggest.
● Users can add a movie to their favorite lists.
● Users can remove a movie from their favorite lists.

3.1.2. Employee
● Employees can add a new movie to the system.
● Employees can delete an existing movie to the system.
● Employees can delete an existing customer account.
● Employees can rent a movie from the system for free.
● Employees can renew the rental period for free.

3.1.3. Customer
● Customers can request an absent movie.
● Customers can rent a movie from the system by paying a fee.
● Customers can renew the rental period for free at the first time, and they can renew

with a fee the next time.
● Customers can add an upcoming movie to the reminder.

3.2. Non-functional Requirements
3.2.1. Scalability

● When the daily traffic of this website, which has 30000 visitors per day, exceeds this
number, the bandwidth limit of this website that is allocated to the hosting plan should
not be exceeded.

3.2.2. Usability
● All pages should be reached from the navigation bar with one click.
● The name of each component in the user interface should be self-explanatory and

meaningful.
● It is necessary to be coherent in the layout and follow the Template Method design

pattern.
● Except for pop-ups, none of the screens must be connected to each other so that users

do not have to go backward on the application.

3.2.3. Security
● Payment information of the users should be secured by encryption.
● Username of the users should be unique.

3.2.4. Robustness
● The database should be designed in a way that it is able to respond to the requests

from the application without any extra effort.
● When there is an error-prone input, the database system should react to it without

facing any problems.

3.2.5. Recovery
● Database should be backed up regularly. Therefore, in any case of system failure, data

should be saved.

3.3. Limitations
● Users can only rate and comment on the movies that they rented.
● Customers can request at most 5 movies daily.
● Customers can rent a movie for at most 7 days.
● Customers must pay a fine for an overdue movie before renting a new movie.

3.4. Pseudo Requirements
● Spring Boot must be used at the back-end side.
● Vue.js must be used at the front-end side.
● MySQL must be used for the database.

4. E-R Diagram of the Movie Rental System

The diagram shown below is the conceptual database entity-relationship diagram of
our online movie rental system. It represents the binary and ternary relationships between
weak or strong entity sets with generalizations, aggregations, and cardinality constraints in
the database schema.

5. Project Website Link
https://ayberkyasa.github.io/biPixel/

6. References

[1] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts. New York,
NY: McGraw-Hill, 2020.

https://ayberkyasa.github.io/biPixel/

